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The effect of surface roughness 
on capillary rise in micro‑grooves
Gholamreza Bamorovat Abadi* & Majid Bahrami*

The capillary action is a unique feature of micro-grooves with numerous applications. This 
spontaneous flow eliminates the need for an extra pumping device to deliver a liquid. Capillary 
action depends on physical properties and features of the solid surface, as well as on thermophysical 
properties of the liquid. In this study, our previously proposed unifying capillary rise model is extended 
to include the effect of surface roughness. A new characteristic length scale is proposed that includes 
salient geometrical parameters, such as micro-grooves height, width, and surface roughness. 
Furthermore, it is shown that by using the proposed characteristic length scale, it can be determined 
whether the capillary action would occur in a given micro-groove and liquid. Various metallic and 
polymeric surfaces with a wide range of surface roughness are fabricated from aluminum, stainless-
steel, natural graphite sheet, and 3D-printed stainless-steel and a polymer. A profilometer and sessile 
drop method are used to measure surface roughness and the contact angles, respectively. The present 
unifying model is compared against our measured data, and it is shown that it can predict the capillary 
rise in rough micro-grooves with less than a 10% relative difference. It is observed that the capillary 
height can be increased for a wetting surface by introducing surface roughness and by using optimal 
micro-groove cross-sections that are triangular as opposed to rectangular. The proposed compact, 
unifying model can be used to predict the capillary rise for any given micro-groove cross-section, 
and as a design tool for numerous industrial and biomedical applications, such as heat pipes, power 
electronic cooling solutions, sorption systems, medicine delivery devices, and microfluidics that utilize 
capillary micro-grooves.

List of symbols
A	� Area (m2)
D	� Micro-groove depth (m)
g	� Gravitational acceleration (m/s2)
h	� Average capillary height (m)
L	� Characteristic length scale (m)
Pw	� Wetting perimeter (m)
Ra	� Arithmetical mean roughness (μm)
RLo	� Developed roughness length
r	� Roughness factor
W	� Groove width (m)
α	� Inclination angle (°)
θ	� Contact angle (°)
ρ	� Density (kg/m3)
σ	� Surface tension (N/m)

The self-driving flow of a liquid in a capillary micro-groove has a wide range of applications, such as in space 
engineering due to microgravity, in power electronics and heat pipes, and in sorption technology and capillary-
assisted evaporators. One major application of capillary action is in the micro-grooves of heat pipes. Heat pipes, 
as a two-phase heat transfer device, are crucial in the design of many power electronic devices1–4. A general 
understanding of flow in open micro-grooves and its limitation is also available in the literature for different 
geometries5–11. In sorption cooling and heat pump technology, the main obstacle preventing commercialization 
is size and weight. Capillary-assisted low-pressure evaporators (CALPEs) are used in closed-cycle sorption sys-
tems, including heat pumps, heat transformers, desalination, and thermal energy storage systems as a compact 
solution12.
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In our previous study13, a new unifying analytical model was proposed to predict the capillary rise in smooth 
micro-grooves with a wide range of cross-section geometries as a function of: (i) contact angle, and (ii) a novel 
characteristic length scale of the micro-grooves, defined as the ratio of the liquid–vapor to the solid–liquid 
interface, i.e., h∗ = cosθ −

W
Pw

.
In the present study, the effect of surface roughness and its impact on contact angle is investigated and added 

to our unifying model and experimentally validated. Surface roughness exists in all real and engineered surfaces, 
especially 3D printed and etched substrates.

The capillary action has long been the focus of much research. Leonardo da Vinci might have recorded the 
first observation of the capillary phenomenon14. Years later, Robert Boyle performed experiments by inserting 
a capillary tube in red wine and observing the independence of the liquid column from the pressure on top 
of the column15. The capillary action was successfully quantified in 1805 by Thomas Young and Pierre-Simon 
Laplace; i.e., the well-known Young–Laplace equation for capillary action16. Albert Einstein published his first 
paper on capillarity17.

Recently, researchers have investigated capillary rise under numerous conditions, including zero gravity, 
tilted tubes, non-circular conduits, tubes with rough surfaces, and porous media18–22. Wang et al.23 studied the 
capillarity rise in micro-grooves with rectangular cross-sections analytically and experimentally. They used a 
Helmholtz free energy method to model the capillary rise in a vertical open micro-groove and experimented with 
micro-grooves made by photolithography. They reported the effect of the micro-grooves’ width on the capillary 
rise. Chen5 studied the flow of a wetting fluid in metallic micro-grooves with various depths. They concluded 
that the flow in micro-grooves was proportional to the square root of time. Khumpuang et al.24 modeled the 
capillary rise in a quadruplets-microneedle made by X-ray lithography for blood extraction. They compared 
their modeling results with experimental data and reported a good agreement. Yang et al.25 studied the dynamic 
flow of capillary phenomenon by using a water and water–glycol mixture in hydrophilic micro-grooves. They 
reported that the capillary rise was faster in a micro-groove with a smaller width, regardless of its geometrical 
cross-section. Extrand22 studied the forces, pressures, energies and kinetics of capillary rise in chemically homo-
geneous tubes and tubes with chemical gradients. Focusing on heat pipes, Wu et al.26 explored the potential of 
increasing the capillary force in grooved wicks by utilizing a novel skew-grooved structure when compared with 
a rectangle-grooved wick. They reported an improvement in capillary force by using a new structure as opposed 
to a rectangular micro-groove.

Contact angle depends on the specific solid–liquid interaction, environmental conditions, such as tempera-
ture and humidity, and surface features such as roughness. Therefore, many researchers attempted to quantify 
this interaction by experimental means. Smith et al.27 studied the wettability of a fluid–solid interface with an 
application in oscillating heat pipes. They used two techniques to measure the contact angle: (i) the sessile drop 
method, and (ii) capillary rise. Reported contact angles included the interaction between copper, aluminum, 
and Teflon with liquid water, acetone, R-134a, and HFO-1234yf. Schwartz28 provided a molecular interpretation 
of contact angle and studied an intrinsic contact angle, defined as variations not related to surface roughness, 
heterogeneity, or penetrability of the solid surface. Tadmor and Yadav29 showed that the as-placed contact angle 
of a droplet decreased with the droplet size since its hydrostatic pressure increased. Khandekar et al.30 studied the 
contact angle in pulsating heat pipes made from real engineering surfaces, as well as ideal smooth surfaces. Diaz 
et al.31 hypothesized that the adsorption of liquid film in the droplet vicinity was the reason for intrinsic hysteresis 
during the sessile drop measurement of static contact angles. Butt et al.32 defined the boundary conditions of 
Young’s equation and then showed the effect of evaporation for macroscopic droplets to be negligible. Rodríguez-
Valverde et al.33 proposed a model for predicting the Young contact angle of rough solid surfaces based on the 
contact angle hysteresis measurements. Tadmor34 reported the line energy to the contact angle resulted from 
the surface imperfections. Tadmor’s proposed relationship was a function of the droplet volume, the interfacial 
energies, and the measured contact angle. Lamour et al.35 proposed a simplified experimental setup to measure 
the contact angle as opposed to commercial goniometers and argued that their setup was precise enough for 
most applications, easier to construct, and affordable. Bernardin et al.36 showed the temperature dependence of 
water-aluminum’s contact angle, experimentally. They reported that for temperatures below 120 °C, the contact 
angle remained unaffected. Others have studied the contact angle theoretically, and experimentally37–39.

Wenzel40 first proposed that the wetting properties of a solid surface should be directly related to surface 
roughness. He concluded that the increase in the surface area of fibrous materials plays a large role in the hydro-
phobicity of the tested samples. Later, Cassie and Baxter41 extended Wenzel’s relationship between roughness 
and contact angle and applied it to porous surfaces. They contributed some naturally occurring hydrophobicity, 
such as in duck feathers to its unique structure. Tamai and Aratani42 studied the effect of surface roughness on 
the contact angle for a silica glass-mercury interface using a sessile drop method. They concluded that Wenzel’s 
model holds for their experiments, showing the variation in contact angle of silica glass samples with various 
roughness ratios. Ryan and Poduska43 developed an experimental method to show the effects of surface rough-
ness on contact angle on solid surfaces. They showed that the change in surface energy due to surface roughen-
ing was responsible for the change in the contact angle. Berim and Ruckenstein44 calculated the microscopic 
contact angle of a liquid droplet on a rough surface. They recognized two limiting cases: (i) Wenzel, and (ii) 
Cassie-Baxter regime. Li et al.45 studied samples with various surface roughness and used phase-field interface 
tracking to simulate the wetting phenomenon. They concluded that when the roughness increased, the contact 
angle of a hydrophilic surface would decrease.

The effect of geometry on capillary meniscus is studied in the literature for limited cases. Concus and Finn46 
provided an estimate for the height of the equilibrium meniscus in a wedge with interior angle 2α, for a case when 
a liquid partially fills a cylindrical container. They showed that the qualitative behavior of such a surface, changes 
near the vertex, and depending on the contact angle and 2α, the surface is either bounded or unbounded. Borhan 
et al.47 studied the capillary rise of a liquid between two sinusoidally corrugated plates. They concluded that the 
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spatial variations in the capillary height at the centerline are negligible while those closer to the wall follow the 
variations in the capillary cross section. They observed a relative enhancement in the centerline capillary height 
as compared with the capillary height in a parallel plate. Bico and Quéré48 discussed the capillary rise of a liquid 
inside an angular capillary tube and showed that for a wetting liquid, the capillary height is inversely proportional 
to the length of confinement. Hill and Pozrikidis49 studied the hydrostatic meniscus shape in a vertical plate 
or circular cylinder with periodic corrugations. They discussed the effect of wall irregularities on the shape of 
the contact line and vertical component of the capillary force by providing analytical and numerical analyses.

Although the capillary phenomenon and the parameters affecting it are studied, a comprehensive capillary 
rise model that includes the surface roughness effect has not been proposed. In this study, a new closed-form 
and unifying capillary rise model is proposed that includes the effect of surface roughness. The proposed model 
is compared with our experimental data in micro-grooves with rectangular and triangular cross-sections. The 
effects of the micro-grooves’ height, width, contact angle, and surface roughness are experimentally investigated 
and reported.

Model development and the effect of surface roughness
We start with a micro-groove with a rectangular cross-section, see Fig. 1. When a micro-groove is placed in a 
liquid as shown in Fig. 1, the liquid rises along the micro-groove due to capillary forces. The governing equa-
tions, main assumptions, and the solution approach to predict the effect of surface roughness on capillary rise 
are listed in this section. Similar steps can be taken for any other cross-section. The present model assumptions 
are as follows:

•	 The open micro-grooves’ width is small enough for the capillary action to occur (10  nm < length 
scale < 1 cm)50,

•	 The surface roughness has a Gaussian (random) distribution, which is created in our surfaces using an abra-
sive polishing method,

•	 The surface is wetting, or hydrophilic,
•	 The micro-grooves are filled with the liquid,
•	 The micro-groove is placed with a slanted angle, alpha, and that its bottom end always touches a fluid reser-

voir,
•	 The physical properties are constant,
•	 The vapor–liquid interface is homogenous, and
•	 Heat transfer is negligible since the capillary action is a fast, almost instantaneous process.

Considering the above-mentioned assumptions and Fig. 2, Young’s equation can be written as16,51:

where, σ and θ are surface tension [N/m] and contact angle [°], respectively. Ra is the average deviation of the 
surface roughness profile from the mean line [µm]. The contact angle in Eq. (1) is the ideal contact angle on a 
smooth surface where there is no roughness. To incorporate the effect of surface roughness, Eq. (1) should be 
modified. Wenzel40 proposed a relationship defined by the ratio of the actual surface area of a solid surface to 
the geometric surface area, or roughness factor, affecting the contact angle:

(1)σsv = σsl + σlvcosθ

(2)r =
actual surface area

geometric surface area

Figure 1.   Top and front view of capillary rise, h, in a rough micro-groove with width of W and depth of D. Our 
previous model13 is extended to include the effects of surface roughness. Dash line shows the mean surface line. 
α denotes an inclination angle of the capillary channel.
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Using Eq. (2), the apparent contact angle of a rough surface, θ∗ , with a roughness factor of r, can be related 
to θ , as follows:

Assuming the droplet size is sufficiently larger than the scale of surface roughness (vdroplet > 0.01 mL), and using 
Eq. (3), introducing surface roughness leads to a decrease in contact angle on a wetting surface. Equation (1) is 
then modified to Eq. (4):

The change in the interface area [m2] between the liquid–vapor and solid–liquid are23:

where, W is the micro-groove width [m], D is the micro-groove depth [m], r is the roughness factor, and dy is 
the infinitesimal change in the capillary height in y-direction, see Fig. 1.

The Helmholtz free energy between three interfaces can be written as52:

Substituting Eq. (1) in Eq. (7) results in the following:

Since the capillary force is dE/dy and with substituting Eqs. (5) and (6) in Eq. (8), the capillary force can be 
found as:

The subscript “lv” is omitted henceforth for simplicity. The capillary force balances the gravity force:

where, ρ is the fluid density [kg/m3], g is gravitational acceleration [m/s2], and h is the equilibrium capillary 
height [m]. α denotes an inclination angle of the capillary channel [°], e.g., 90° for a vertical micro-groove. 
Equating Eqs. (9) and (10):

The ideal wetting perimeter and cross-sectional area for a smooth micro-groove are defined as Pw,i = 2D + W, 
and Ac,i = D × W, respectively. The actual wetting perimeter and cross-sectional area are given by Pw = r(2D + W), 
and Ac = r × D × W, respectively.

The capillary height, h, is defined as the macroscopic height of the liquid column, neglecting local variations, 
corner, or near-wall effects, for simplicity. In other words, this is an averaged capillary rise that satisfies the force 
balance and accounts for the entire volume of liquid column. It should be noted that for most of the capillary 
rise calculations, only one capillary height value is needed, not the local variation. For applications where such 
details are needed, other models should be used.

Non-dimensionalizing Eq. (11), one can conclude:

where, h* is defined as the non-dimensional capillary height, rcosθ is the product of roughness factor and cosine 
of the ideal contact angle, as described in Eq. (3), and

(3)Cosθ∗ = r Cosθ(3)

(4)σsv = σsl + rσlv cosθ

(5)dAlv = (W + 2Ra)dy

(6)dAsl = r(2D +W)dy

(7)dE = σsv dAsv + σsl dAsl + σlv dAlv

(8)dE = σlv(dAlv − rdAslcosθ)

(9)Fc = σlv
[

r2cosθ(2D +W)−W − 2Ra
]

(10)Fg = ρ g r(D W h) sinα

(11)h =
σ
[

r2cosθ(2D +W)−W − 2Ra
]

ρgrDWsinα

(12)h∗ =
ρghsinα

σ
×

Ac

Pw
= rcosθ −

W + 2Ra

rPw,i
= rcosθ − L

Figure 2.   A schematic of a droplet on a flat surface showing three forces of surface tension leading to Young’s 
equation under static equilibrium on a rough surface.
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where, L is a new characteristic length scale defined in this study to include the surface roughness of micro-
grooves. The subscript “i” is dropped henceforth.

From Eq. (12), a criterion for capillary action to occur can be concluded by setting h* = 0:

Therefore, for capillary action to occur, h* > 0, the following should be true:

Therefore, there is a threshold based on a micro-groove’s width, or characteristic length scale, as defined 
above, above which capillary action would not occur.

Surface roughness can be defined by various parameters and measured by different means. Here, surface 
roughness is defined based on the EN ISO 21920-2:2021 standard53, characterized by Ra and RLo

54, and measured 
by a surface profilometer55. RLo is the developed length of the surface roughness profile in percentage, as shown 
schematically in Fig. 3 and is non-dimensional. To determine the roughness factor in Wenzel’s equation, Eq. (3), 
from surface roughness data, the following is used56:

Hence, Eq. (12) can be rewritten as:

Equation (17) is the general form of the capillary rise equation and can be used for any geometry if the geo-
metrical values for W and Pw are known. While Pw = 2D +W for a rectangular cross section, Pw = 2

√

D2 +
W2

4
 

for a triangular cross-section. A list of different cross-sections, equations for Pw, and proof of how the model 
adapts to different geometries is presented in13.

Experimental study
The surface roughness of a solid surface can be determined by various means, including optical methods, such 
as laser reflectivity and scanning electron microscopy, and contact methods, such as contact stylus tracing, or 
a profilometer. Here, a Mitutoyo SJ-400 profilometer was used to measure the surface roughness. The tip of the 
stylus moves in a line across the surface and measures the peaks and valleys of the solid surface. The stylus height 
changes vertically over the peaks and valleys. These changes are interpreted internally in the device and a profile 
is created. This roughness profile is then used to calculate roughness parameters.

The contact angle was measured using the sessile drop method. A droplet of water was placed on a flat solid 
surface. An AM7915MZT Dino-Lite Digital Microscope with ~ 150 × magnification was used for taking images. 
Image processing was performed with the microscope’s accompanying software. The solid surfaces used were 
stainless-steel, aluminum, natural graphite sheets, 3D-printed polymer, and 3D-printed stainless-steel. The liq-
uid used in the experiments was water. Measurements were repeated at least five times and an averaged value 
is reported for the contact angle. The schematic of the test rig used for sessile drop measurements is shown in 
Fig. 4. Low-power LED lights were used for illumination so that no heat is emitted to the water droplet from 
the light source. Tests were performed under identical conditions, at room temperature, relative humidity, and 
pressure. Water droplets were placed on the solid surface gently using a syringe and needle. An approximately 
0.05 mL water droplet was used in each measurement27.

In order to experimentally show the capillary rise of water in micro-grooves, various micro-grooves were fab-
ricated. The micro-grooves were created using various methods. Direct Metal Laser Sintering (DMLS) was used 
for 3D-printed micro-grooves with stainless-steel. Stereolithography (SLA) was used for micro-grooves made 
with polymers. Figure 5 shows an example of a micro-groove made by stereolithography used for our capillary 

(13)L =
W + 2Ra

rPw,i

(14)h∗ = 0 → r cosθ =
W + 2Ra

rPw
or r cosθ = L

(15)W < r2 Pwcosθ − 2Ra or L < rcosθ

(16)r = 1+ RLo

(17)h∗ = cosθ[1+ RLo]−
W + 2Ra

Pw[1+ RLo]

Figure 3.   The actual surface roughness profile length vs. the ideal smooth surface length. RLo is the percentage 
increase in the profile length.
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rise measurements. The inset in Fig. 5 shows a micro-groove thickness of 500 µm, and a micro-groove width of 
400 µm, where the micro-groove depth is 1 mm. The micro-grooves were vertically inserted in a container with 
a pool of liquid water such that a small portion of the micro-grooves were in touch with the liquid. For ease of 
identifying the capillary height in the images, a 1% by-volume solution of water and food coloring was used. The 
micro-grooves were left in the pool until the capillary height was steady and the maximum height was achieved. 
After achieving an equilibrium state, the height of the liquid columns was measured and reported.

Due to the manufacturing defects and variation in surface roughness, the capillary rise in each micro-groove 
would not be uniform. Therefore, averaged values across the micro-grooves are reported for the capillary height 
for each sample. Images were taken with the same Dino-Lite Digital Microscope, with ~ 70 × magnification, 
and at room temperature and pressure. Image processing was performed with the microscope’s accompanying 
software to measure the capillary height. The microscope and the images were calibrated using a target ruler, 
provided by the manufacturer.

Sample preparation
The solid surfaces used for the roughness measurement were made of stainless-steel, aluminum, 3D-printed 
stainless-steel, 3D-printed polymer, and cold-stamped natural graphite sheets, with no coatings. Fine-finished 
stainless-steel and aluminum sheets were purchased and then roughened with abrasive polishing. Micro-grooves 
with various micro-groove depth and spacing were fabricated to make a comprehensive study. It was shown in our 
previous study13 that as the micro-groove spacing, or micro-groove width, reduces, the capillary height increases. 
The micro-groove depth has little effect on the capillary height. Figure 6 shows a schematic and dimensions of 
micro-grooves with various thicknesses and spacings fabricated to measure the capillary height. Figure 7 shows 
the cross-section of various micro-grooves used for capillary height measurements in the present study. The 
micro-groove width range is between 100 to 500 µm with a micro-groove depth of 1 mm. The micro-groove 
thickness does not directly affect the capillary rise but its variation between 200 to 500 µm is studied as a limit-
ing parameter in the fabrication process, and in compactness. As seen in Figs. 8 and 9, aside from variations in 
micro-groove dimensions, two main cross-sectional geometries were considered, rectangular and triangular 
micro-grooves. The triangular cross-section is expected to have a higher capillary height as compared to rec-
tangular one, as per our model predication13.

Uncertainty analysis
The accuracy of the roughness measurements was 0.001 µm. The contact angle accuracy was 0.01°. The micro-
scope used for measuring the capillary height was accurate to 0.1 μm. Considering the uncertainty in geometry 
dimensions, measured contact angle, measured capillary height, and standard deviation of data, the uncertainty 
of our capillary height measurement is estimated to be 18.17%, based on the method proposed by Moffat57.

Figure 4.   A schematic of the contact angle measurement using the sessile drop method. The contact angle is 
formed between the liquid–solid–vapor interface.

Figure 5.   Micro-grooves made by stereolithography (SLA1.03) were used for the capillary rise measurement. 
The inset shows a micro-groove thickness of 500 µm and a micro-groove width of 400 µm. Micro-groove depth 
is 1 mm. Table 1 lists the sample details.
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Results and discussion
The solid surfaces used for the roughness and contact angle measurement were made of stainless-steel, aluminum, 
3D-printed stainless-steel, 3D-printed polymer, and natural graphite sheets. Measurements were repeated at least 
five times and averaged values were reported. Each solid surface was thoroughly cleaned with ethanol and left 
to dry before performing sessile drop tests. The natural graphite sheets that were supplied commercially were 
made by pressing graphite flakes and forming them into sheets and then were cold-stamped to form grooves. 
For metallic surfaces, flat sheets were used.

It was observed that with sandblasting, the aluminum sample surface roughness, Ra, was increased from 
0.24 to 4.43 μm, RLo increased from 0.5 to 1.77, and its contact angle decreased from 65.2° to 42.1°. Similarly, 
the stainless-steel sample surface roughness, Ra, was increased from 0.45 to 1.64 μm, RLo increased from 0.2 to 
0.45, and its contact angle decreased from 67.4° to 58.8°. Since stainless-steel has shown a higher hardness than 
aluminum, the increase in its surface roughness was less than that of the aluminum sample. The measured sur-
face roughness for the 3D-printed polymer sample was an Ra of 1.03 μm and an RLo of 1.21. Its contact angle was 
measured to be 48.2°. The roughest sample was the 3D-printed stainless-steel with an Ra of 12.01 μm, an RLo of 
1.12, and a contact angle of 45.0°. The measured surface roughness of the natural graphite sheet, with density of 
0.23 g/cm3, was an Ra of 4.45 μm, an RLo of 0.84, and its contact angle was 50.7°. Figure 10 shows the static contact 
angle of water on various solid surfaces. As shown in Fig. 10, the decrease in the contact angle of the stainless-steel 
surface was less that that of the aluminum sample. This can be explained by the fact that the increase in roughness 
of the stainless-steel sample was less than that of the aluminum sample during the sandblasting process. Table 1 
summarizes the surface roughness and contact angle measurement results for the samples.

As shown in Fig. 11, when a liquid comes in contact with a micro-groove, a capillary meniscus is formed 
between the two adjacent walls due to the disjoining pressure. The capillary meniscus can change based on surface 
roughness, contact angle, and surface tension. Water properties such as surface tension and density can be found 
in the literature58; at a room temperature of 25 °C; surface tension is 7.28 × 10–2 N/m, and density is 999 kg/m3.

Figure 12 shows the capillary height measurement on two capillary micro-grooves with rectangular and tri-
angular cross-sections. Images were taken by a digital microscope and were analyzed to measure the maximum 

Figure 6.   A schematic and dimensions of micro-grooves with various thicknesses and spacing fabricated to 
measure the capillary height. SLA stereolithography, SS stainless steel (DMLS), R rectangular, T triangular.
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equilibrium capillary height, as described in section “Experimental study”. The capillary height is not uniform 
in all micro-grooves due to manufacturing imperfections, variation in dimension, and surface roughness. As 
an example, the SLA1.03 with a 200-μm micro-groove had an average width of 192 μm, a standard deviation of 
0.017, and coefficient of variation of 8%. Therefore, averaged values are reported for capillary height.

It was experimentally verified that the addition of small amount of food coloring (1% solution) has a negligi-
ble effect on contact angle and capillary height. Without the food coloring it would be hard to see the capillary 
rise, as it is shown in Fig. 13. Here, by adjusting the light source angle, the height of the liquid column can be 
seen as bright spots.

Figure 14 shows the predicted capillary height in micro-grooves, using the present model, Eq. (11), versus 
the measured values for the samples in this study. It can be observed that the capillary height increases rather 
non-linearly when reducing the micro-grooves’ width. This figure also shows a capillary rise comparison between 
rectangular and triangular micro-grooves. The experimental results show a good agreement with the present 
analytical model, Eq. (11), and that discrepancy is within the experimental uncertainties. As previously men-
tioned, sources of uncertainties include variations in surface roughness, surface oxidization for metallic samples, 
geometry variations and meniscus corner effects23.

Figure 7.   SLA (stereolithography) micro-grooves with various thicknesses and spacing fabricated to measure 
the capillary height. The micro-groove width range is between 100 to 500 µm. The micro-groove depth is 1 mm 
and their thickness ranges between 200 to 500 µm. Table 1 lists the sample details.

Figure 8.   Two cross-sectional micro-groove geometries considered, rectangular (SLA1.03R) and triangular 
(SLA1.03T) cross-sections, made with stereolithography (SLA). The triangular cross-section has a higher 
capillary height as compared to the rectangular one. Table 1 lists the sample details.
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The present unifying model in a non-dimensional form for capillary height is shown in Eq. (17). Figure 15 
shows the non-dimensional capillary height, h*, as a function of a new characteristic length scale,  L . For each 
value of rcosθ, the h* is a line that intercepts the x-axis at some point, which is the maximum allowable char-
acteristic length scale for the capillary action to occur. There exists a maximum L , for each rcosθ value, above 
which the capillary action would not occur for that rcosθ. In other words, for capillary action to occur (h* > 0), the 
characteristic length scale, L , should be smaller than a certain value. This value depends on the micro-groove’s 
dimensions, contact angle and surface roughness, and equals rcosθ.

Figure 16 makes a comparison between capillary height in rectangular SLA1.03 micro-grooves versus the 
grooves’ width. The proposed model is compared to the model in13 where the surface roughness is considered 

Figure 9.   Two micro-grooves considered, rectangular (SS12.01R) and triangular (SS12.01T) cross-sections 
made with direct metal laser sintering (DMLS). The triangular cross-section has a higher capillary height as 
compared to the rectangular one, see the results. Table 1 lists the sample details.

Figure 10.   The contact angle measurement using the sessile drop method. Images show the static contact angle 
formed for water on aluminum, stainless-steel, 3D-printed polymer, 3D-printed stainless-steel, and natural 
graphite sheet surfaces. Table 1 lists the sample details.
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in the contact angle (Wenzel’s contact angle) but not in the characteristic length scale of the proposed model. 
Comparison is also made with a simple capillary model based on Young–Laplace equaiton59, i.e., h =

2σ cosθ
ρgdh

 , 
with W as hydraulic diameter.

As shown, the proposed model produces the most accurate results. Similar results were obtained for triangular 
grooves. Therefore, the proposed unifying model can be used when there is a need for a model that considers 
not only the cross section of the groove but also the effect of surface roughness, particularly for micro-grooves 
where the effect of surface roughness is pronounced.

Conclusion
A previously proposed unifying, non-dimensional model for capillary rise in micro-grooves was extended to 
include the effect of surface roughness and was experimentally validated. A new characteristic length scale was 
proposed that includes all of the key geometrical parameters, i.e., micro-grooves height, width, and surface 
roughness. Furthermore, it was shown that there exists a characteristic length scale, for each modified contact 
angle value, above which the capillary action would not occur ( L > rcosθ ). The proposed unifying model can 
be used for any given micro-groove geometry and condition for designing heat pipes, vapor chambers, and 
capillary-assisted evaporators as well as biomedical devices.

Table 1.   A summary of surface roughness values for each sample, measured by the SJ-400 profilometer. 
Contact angles were measured using a sessile drop method.

Sample Material Ra (μm) RLo Contact angle (°)

SS1.64 Stainless-steel 1.64 0.45 58.8

SS0.45 Stainless-steel 0.45 0.20 67.4

Al4.43 Aluminum 4.43 1.77 42.1

Al0.24 Aluminum 0.24 0.50 65.2

SS12.01 3D-printed direct metal laser sintered (DMLS) stainless-steel 12.01 1.12 45.0

SLA1.03 3D-printed stereolithography (SLA) polymer 1.03 1.21 48.2

NGS4.45 Natural graphite sheet (NGS)—0.23 g/cm3 4.45 0.84 50.7

Figure 11.   A capillary meniscus is formed between two adjacent micro-grooves due to the disjoining pressure. 
Top: SLA1.03, Bottom: SS12.01. A 1% solution of water and food coloring is used for better image contrast in the 
polymer sample. Table 1 lists the sample details.



11

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14867  | https://doi.org/10.1038/s41598-022-19111-w

www.nature.com/scientificreports/

Various metallic and polymer surfaces were fabricated and prepared, including aluminum, stainless-steel, 
natural graphite sheet, and 3D-printed stainless-steel and polymer. Experimental validation was performed 
using a profilometer and sessile drop to measure samples surface roughness and the contact angles, respectively. 
Results showed that there was a less than a 10% relative difference between the new unifying model and our 
experimental data. It was observed that a triangular cross-section micro-groove, as opposed to a rectangular 

Figure 12.   A comparison between the capillary height of SLA1.03 micro-grooves with different micro-groove 
geometry. Top: rectangular, bottom: triangular micro-grooves. The micro-groove depth is 1 mm, and contact 
angle is 48.2 degrees. Dashed lines are an average height. Table 1 lists the sample details.

Figure 13.   Capillary rise in an SLA1.03 sample without food coloring. The height of the liquid column can be 
seen as bright spots, by adjusting the light source angle.
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one, offers a higher wetted area (and capillary height). Wenzel’s model held true for most experimental data. It 
was concluded that to increase the capillary height in a micro-groove, the wettability of a solid surface can be 
increased by decreasing its contact angle by roughening the substrate. This is especially advantageous in applica-
tions, where compactness and miniaturization are key.

Figure 14.   A comparison between capillary height in micro-grooves vs the micro-grooves’ width. Two cross-
sections are considered, rectangular and triangular, and experimental results are compared against the present 
model, Eq. (11). Data for SLA1.03 sample.

Figure 15.   The unifying non-dimensional form of capillary height, Eq. (17), as a function of the characteristic 
length scale, contact angle, and surface roughness, as compared to our experimental data.

Figure 16.   A comparison between capillary height in rectangular micro-grooves vs the micro-grooves’ 
width. The proposed model is compared to the model in13 where surface roughness is not considered in the 
characteristic length scale (but is considered in the contact angle). Comparison is also made with a simple 
capillary model based on Young–Laplace equation59. Data for SLA1.03 sample.
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